

DGG-003-016401

Seat No. _

M. Sc. (Sem. IV) (Mathematics) (CBCS) Examination

April / May - 2015

MATHS - CMT - 4001 : Commutative Ring Theory (Old Course)

Faculty Code: 003 Subject Code: 016401

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1)

- (1) Answer all the questions.
- (2) Each question carries 14 marks.

1. Answer any Seven

 $7 \times 2 = 14$

- (a) Define the Jacobson radical J(R) of a ring R. Verify that J(F[X]) = (0), where F[X] is the polynomial ring in one variable X over a field F.
- (b) Define a unit in a ring R. Determine the units of \mathbb{Z} .
- (c) When is a module M over a ring R said to be finitely generated? Illustrate it with an example.
- (d) Define a multiplicatively closed subset of a ring. If P is any prime ideal of a ring R, then verify that $R \setminus P$ is a multiplicatively closed subset of R.
- (e) State Nakayama's lemma.
- (f) Define primary ideal of a ring. If p is a prime number, then show that $p^n \mathbf{Z}$ is a primary ideal of \mathbf{Z} for any $n \geq 1$.
- (g) Show that the real number $\frac{1+\sqrt{37}}{2}$ is integral over **Z**.
- (h) Define a Noetherian module.
- (i) Define a ring homomorphism. Verify that any ring homomorphism from a field F into a nonzero ring is injective.
- (j) When is a property of a ring said to be a local property?

2. Answer any Two

 $2 \times 7 = 14$

- (a) Prove that the set of all nilpotent elements in a ring R is an ideal of R. If nil(R) is the nilradical of R, then prove that the ring $\frac{R}{nil(R)}$ has no nonzero nilpotent element.
- (b) (i) Let P_1, \ldots, P_n be prime ideals of a ring R. If an ideal I of R is such that $I \subseteq \bigcup_{i=1}^n P_i$, then show that $I \subseteq P_i$ for some $i \in \{1, \ldots, n\}$.
- (ii) Let I_1, \ldots, I_n be ideals of a ring R. If a prime ideal P of R satisfies $P \supseteq \bigcap_{i=1}^n I_i$, then prove that $P \supseteq I_i$ for some $i \in \{1, \ldots, n\}$.
- (c) Let M be a finitely generated R-module and let I be an ideal of R. If f is an R-module endomorphism of M such that $f(M) \subseteq IM$, then prove that f satisfies an equation of the form $f^n + a_1 f^{n-1} + \cdots + a_n Id_M = \text{zero}$

1

DGG-003-016401]

[Contd...

R-homomorphism from M into M for some $n \geq 1$, where $a_i \in I$ for each $i \in \{1, \ldots, n\}$, and $Id_M : M \to M$ is the identity map.

- 3. (a) Let M be an R-moule. Prove that M = (0) if and only if $M_P = (0)$ for every prime ideal P of R.
- (b) Let M_1, M_2 be submodules of an R-module M. Prove that $\frac{M_1 + M_2}{M_1} \cong \frac{M_2}{M_1 \cap M_2}$ as R-modules.
- (c) Let P be any nonzero prime ideal of a principal ideal domain R. Prove that P is a maximal ideal of R.

OR

- 3. (a) Let S be a multiplicatively closed subset of a ring R. For any ideal I of R, prove that $S^{-1}(\sqrt{I}) = \sqrt{S^{-1}I}$.
- (b) Let I be a decomposable ideal of a ring R. Let $I = \bigcap_{i=1}^{n} q_i$ be a minimal primary decomposition of I with $\sqrt{q_i} = P_i$ for each $i \in \{1, ..., n\}$. Prove that $\bigcup_{i=1}^{n} P_i = \{r \in R | (I:_R r) \neq I\}$.
- (c) Let R be a subring of a ring T. If $t \in T$ is integral over R, then prove that R[t] is a finitely generated R-module.
- 4. Answer any Two

 $2 \times 7 = 14$

- (a) State and prove the first uniqueness theorem on decomposable ideals in a ring.
- (b) Let M be a module over a ring R. If a submodule N of M is such that N and $\frac{M}{N}$ are Artinian, then prove that M is Artinian.
- (c) Let R be a Noetherian ring. If I is a proper irreducible ideal of R, then prove that I is primary.
- 5. Answer any **Two**

 $2 \times 7 = 14$

- (a) State and prove the Chinese remainder theorem.
- (b) Let S be a multiplicatively closed subset of a ring R. Let $g: R \to T$ be a ring homomorphism such that g(s) is a unit in T for all $s \in S$. Prove that there exists a unique ring homomorphism $h: S^{-1}R \to T$ such that $h(\frac{r}{1}) = g(r)$ for all $r \in R$.
- (c) Let R be a subring of a ring T. Let S be a multiplicatively closed subset of R. If C is the integral closure of R in T, then prove that $S^{-1}C$ is the integral closure of $S^{-1}R$ in $S^{-1}T$.
- (d) Prove that the nilradical of an Artin ring R, is nilpotent.